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In this work we investigate the presence of a torsional instability in single-wall carbon nanotubes which
causes small diameter chiral carbon nanotubes to show natural torsion. To obtain insight into the nature of this
instability, the natural torsion is calculated using an extended tight-binding model and is found to decrease as
the inverse cube of the diameter. The dependence of the natural torsion on chiral angle is found to be different
for metallic and semiconducting nanotubes, specially for near-armchair nanotubes, for which the behavior of
semiconducting nanotubes deviates from the simple sin�6�� behavior observed for metallic nanotubes. The
presence of this natural torsion implies a revision of the calculation of the chiral angle of the nanotubes.
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Several theoretical and experimental studies indicate that
the electronic and optical properties of carbon nanotubes are
extremely sensitive to structural deformations, such as axial,
radial, or torsional strains.1–4 Due to the possible applicabil-
ity of nanotubes for electromechanical actuators, the tor-
sional properties of multiwall and single-wall carbon nano-
tubes �SWNTs� have been widely investigated both
experimentally and theoretically.4–10 However, for the inter-
pretation of these works, these reports assume that in their
natural state, carbon nanotubes are free from such geometri-
cal deformations. In the case of radial and axial strains, this
assumption can always be asserted since these deformations
maintain the full symmetry of the nanotube and thus the
nanotube structure can be renormalized to the new param-
eters without losing its basic properties. However, in the case
of a torsional strain, the pure translational symmetry of the
nanotube is broken and thus the usual symmetry representa-
tion of the nanotube unit cell needs to be revised.

One of the main problems involved in the simulation of
nanotube properties under torsion is the fact that the appli-
cation of a torsional stress to the carbon nanotube breaks the
pure translational symmetry of the nanotube unit cell. For
this reason, calculations involving the effects of torsion are
done either on finite-length nanotubes or in supercells. How-
ever, these studies were able to obtain important information
about the mechanical properties of nanotubes. One interest-
ing result was reported by Liang et al.,9 which showed that
the relationship between the axial-strain-induced torsion in
chiral nanotubes is asymmetric with respect to zero strain.
On the other hand, Chang et al.10 showed also that the effects
of torsion on a chiral single-wall carbon nanotube is depen-
dent on the load direction. These results originate from the
fact that chiral nanotubes do not have inversion symmetry
and thus the effects of a torsional stress in one direction of a
nanotube is different from that in another direction. This fact
brings up several different questions, one of which is about
the effect of this asymmetry on the nanotube structure itself.

In the present work we investigate the presence of a natu-
ral torsion in chiral single-wall carbon nanotubes by using a

symmetry-adapted tight-binding calculation. The presence of
this natural torsion is explained in terms of a torsional insta-
bility similar to the Peierls instability expected for metallic
linear chains. The helical symmetry of the nanotube is taken
into consideration by describing the nanotube structure using
a helical-angular construction of the nanotube11 and the in-
teractions between the atoms are considered in terms of
tight-binding parameters for � and � orbitals obtained from
density-functional theory �DFT� as a function of the inter-
atomic distances.12,13 An important work discussing the ef-
fect of strain in carbon nanotubes using a helical-symmetry-
based first-principles calculation was published by Lawler et
al.14 Although, the presence of a natural torsion was not in-
vestigated by these authors, it is expected that their method is
appropriate for such a study and should be used to verify the
simpler model calculations.

Conceptually, SWNTs can be seen as a rolled up graphene
sheet. In Fig. 1, the translational primitive cell of a �4,2�
nanotube is shown. The chiral vector �Ch�, that lies along the
circumferential direction of the tube, defines the tube
uniquely. This vector can be written as Ch=na1+ma2 in
terms of the primitive vectors of the graphene honeycomb
lattice �a1 and a2�, also shown schematically in the figure,
and the indexes �n ,m� specify the carbon nanotube structure.
This unit cell is bounded by the pure rotational symmetry
vector Ch /d, where d is the greatest common divisor of n
and m �d=gcd�n ,m��, and by the pure translation vector T.

Figure 1 shows the translation unit cell of a �4,2� SWNT
and its structural parameters.13 When a torsion is applied to
the SWNT, the pure translational symmetry �depicted by the
translation vector T in Fig. 1� is broken. However, the screw
translations, such as the one represented by the vector Z in
Fig. 1, remain as symmetry operations of the nanotube. For
this reason, it is possible to calculate the electronic properties
of torsioned carbon nanotubes by using a helical-angular
representation,11 where the electronic states are labeled by a
purely rotational quantum number �, which is related to an
angular momentum around the nanotube axis, and a helical
quantum number h, which can be loosely related to a linear
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momentum of the tube in the axial direction.11 A torsion �
causes a variation in the graphene primitive vectors, such
that ��a1=�Ta1 and ��a2=�Ta2, where �a1 and �a2 are the
components of the primitive vectors of graphene in the cir-
cumferential direction �see Fig. 1�, and Ta1 and Ta2 are their
components along the axial direction. For a nanotube of
length L and diameter dt, the torsion angle ���� can be cal-
culated �in radians� as ��=2�L /dt.

The carbon-nanotube electronic bands were calculated us-
ing an extended tight-binding model considering the DFT-
based parametrization.12 The Brillouin zone �BZ� defined by
the helical-angular construction of the nanotube11 can be un-
derstood in terms of d cutting lines separated by 2 /dt on the
direction perpendicular to the nanotube axis. The length of
the BZ is 2�N / �Td�, where N is the number of hexagons in
the nanotube translation unit cell and d=gcd�n ,m�, where
gcd stands for the greatest common divisor. The electronic
contribution to the total energy �E� is calculated by integrat-
ing the band structure along this extended BZ. The contribu-
tion of the interactomic repulsion to the total energy is also
obtained from the work of Porezag et al.12

To illustrate the torsion effect on E for some sample
SWNTs, we first relaxed the nanotube structure for fixed
values of torsion. The other structural parameters which were
allowed to relax are shown in Fig. 1: longitudinal length of
the SWNT unit cell �T�, nanotube diameter �dt�, and the axial
and angular distances between the A and B carbon atoms
�TAB and �AB�. The dependence of the total energy E on the
torsion � can be seen in Fig. 2�a� for an �8,0� zigzag �solid
blue circles� and a �5,3� chiral nanotube �red triangles�. A
clear parabolic behavior can be seen for both nanotubes.
However, it can also be observed that while for the zigzag
nanotube the energy minimum is at �=0, for the chiral nano-
tube, the most stable configuration occurs for ��0, which
indicates that chiral nanotubes have a natural torsion �0. The
magnitude of this natural torsion �0=0.0127 nm−1 is equiva-
lent to twisting the nanotube of 2� every 137 nm of its
length �or twisting a 1-�m-long nanotube 7.3 times�.

This natural torsion can be understood within the frame-

work of the zone folding of the electronic states of graphene
due to the boundary conditions imposed by the curvature of
the nanotube. The effects of torsion on the electronic bands
of carbon nanotubes were investigated by Yang and Han1

using a Hückel tight-binding model. Within this simple ap-
proach, the torsion effects are estimated in terms of a shift
�kF of the Fermi point, kF, �point where the graphene va-
lence and conduction bands touch each other�, also known as
the Dirac point, with respect to the cutting lines defined by
the allowed wave vectors in the graphene reciprocal space.
The direction and magnitude of the shift are given by

�kF =
�3dt

2a
� sin�3��êc +

�3dt

2a
� cos�3��êt, �1�

where � is the nanotube chiral angle and a=�3acc, in which
acc�0.142 nm is the distance between the A and B atoms in
graphene. The unit vectors êc and êt are aligned along the
circumferential and translational directions, respectively.
This model was able to predict the behavior of the gap in
metallic nanotubes with applied torsion.1

In this sense, the torsion will cause a change in the rela-
tive position �by −�kF� of the cutting lines with respect to
the Fermi point, keeping both the distance between the cut-
ting lines and their length unchanged. To illustrate this effect
on the total electronic energy, Figs. 2�b� and 2�c� depict two
cutting lines which pass near the kF point for an untorsioned
�5,3� semiconducting nanotube �solid lines� and for posi-
tively and negatively torsioned tubes, given by dashed lines

FIG. 1. �Color online� Unit cell of a �4,2� carbon nanotube
showing its structural parameters. The distance between the AB
atoms in the nanotube unit cell and the graphene lattice vectors a1
and a2 projected on the nanotube cylindrical surface are decom-
posed into their components along the axial, �TAB, Ta1, and Ta2� and
circumferential directions ��AB, �a1, and �a2� �Ref. 13�.
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FIG. 2. �Color online� Variation in the total energy with the
applied torsion for an �8,0� nanotube �blue circles� and a �5,3� nano-
tube �red triangles�. �a� The solid line represents a parabolic fit. ��b�
and �c�� Sketch of the graphene reciprocal space near the K point
�kF�. Two nearest cutting lines for undeformed �5,3� nanotube are
shown as solid lines. For torsioned nanotubes the cutting lines,
which are shifted by −�kF as an effect of torsion, are shown as
dashed lines. The value of �kF has an opposite direction for �b�
positive torsion and �c� negative torsion. In �b� the torsion shifts the
cutting line nearest to K away from the K point while in �c� the
torsion shifts it toward the K point. The equienergy contour for each
of the cutting lines nearest to K in �b� and �c� are also shown.
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in �b� and �c�, respectively. For clarity, the cutting lines were
moved by −�kF while the position of the Fermi point was
kept constant. In this particular case, for a positive torsion,
the cutting line which is closer to the K point �kF� moves
away from the Fermi point causing the valence band to shift
down in energy. On the other hand, for a negative torsion,
this cutting line moves toward the K point and thus the elec-
tronic energy shifts up. For other cutting lines farther away
from the kF point, the behavior can either be similar or op-
posite to this, depending on whether the cutting line passes
by one side or the other of the nearest kF point. For large
diameter nanotubes, this alternation tends to cancel out this
effect so that the influence of a torsional stress on the total
energy decreases rapidly. However, for small diameter tubes,
the cutting lines which are closer to the kF point, where the
electronic dispersion is large, will contribute the most to the
change in the total energy due to torsion.

The origin of the natural torsion can be understood by
noting that in the case of the nanotube depicted in Figs. 2�b�
and 2�c�, the derivative of the total energy with respect to the
torsion ��E /��� does not vanish for �=0. Although this fact
can be directly inferred from the work of Yang and Han,1 the
authors did not perceive that a natural torsion would be a
direct consequence of their findings: this nonvanishing de-
rivative can be interpreted as a residual torque which causes
the nanotube to deform itself in order to find a lower-energy
configuration and gives rise to a natural torsion. Although
this process is in some way similar to the underlying physics
behind the Peierls instability in one-dimensional metals,
which has been previously investigated for SWNTs,15 this
torsion is not an effect of such lattice instabilities originating
from a strong electron-phonon coupling. An important con-
firmation of this is the fact that neither the armchair SWNT
nor the metallic zigzag SWNT, for which the electron-
phonon interaction should be large, is naturally torsioned.
Instead, the natural torsion is associated with the lack of an
inversion symmetry, which is present for a graphene sheet, in
the chiral SWNT structure.

To better understand the dependence of the natural torsion
on the SWNT diameter, we can use some basic results from
continuum elasticity theory. Within that approach, a torsion
��� caused by a given torque 	 can be calculated as �
=	 /GJ, where G is the shear modulus of the material and J
is the torsion constant, or the polar moment of inertia �in the
case of cylindrical cross sections�. For a hollow tube, the
value of J is given by

J =
�

2
�Rout

4 − Rin
4 � � 2�R3�R , �2�

where Rin and Rout are the inner and outer radii of the tube,
and R and �R are the mean radius and the width of the tube
wall. This last approximation is only valid when the wall
width is much smaller than the radius and thus should apply
only for large diameter nanotubes. We thus conclude that if
the torque is independent of the nanotube diameter, a 1 /dt

3

behavior should be expected for the natural torsion in larger
diameter carbon nanotubes.

To investigate the dependence of the natural torsion on the
nanotube diameter and chirality, the torsion was also allowed

to relax. The structural relaxation was performed in a con-
figuration space of five parameters ��, �AB, TAB, T, and dt�
using the conjugate gradients method with a convergence
threshold for the total energy of 10−8 meV. It should be
mentioned that the remaining parameters Ta1, Ta2, �a1, and
�a2 are constrained by the nanotube structure, being thus
determined by the values of T and �. In the inset to Fig. 3,
the dependence of the natural torsion on nanotube diameter
can be observed �each point in the figure represents a nano-
tube with a diameter between 0.5 and 1.76 nm� on a loga-
rithmic scale. A dashed line is shown in the inset to Fig. 3 as
a guide to the eye representing the �0=Adt

−3, with A=2

10−3 nm2, behavior obtained from the continuum theory.
Note that this line corresponds to a limiting behavior. The
fact that in the limit of large diameter carbon nanotubes the
behavior falls into a 1 /dt

3 dependence indicates that the
amount of torque given by the nanotube electronic structure
to the lattice is not further decreasing with increasing nano-
tube diameter. For smaller diameter nanotubes, the depen-
dence of the natural torsion on the nanotube diameter devi-
ates from this behavior, indicating that for these nanotubes
the amount of torque originating from the electronic struc-
ture is dependent of the nanotube diameter. This effect origi-
nates from the increasing overlap between the � and � bands
due to the curvature-induced rehybridization. Also, the ef-
fects of higher-order terms in J should contribute to this de-
viation.

The dependence of the natural torsion on the chiral angle
can be more clearly investigated if the 1 /dt

3 dependence of �0
on dt is removed by plotting �0dt

3 as a function of chiral angle
�, as shown in Fig. 3. Note that most of the nanotubes follow
either one of three specific behaviors, which are shown in
different colors �online� and symbols. These nanotubes cor-
respond to the different mod�2n+m ,3�=q values with q
being equal 0 for metallic single-wall carbon nanotubes
�M-SWNTs� and 1 or −1 for semiconducting single-wall car-
bon nanotubes �S-SWNTs�. It is important to mention that, as
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FIG. 3. �Color online� Dependence of �0dt
3 on the chiral angle

��, in units of � /6� for the different mod�2n+m ,3�=q families, q
=0, −1, and 1. The solid lines show the curves given by Eq. �3�. The
inset shows the dependence of the natural torsion on the nanotube
diameter on a logarithmic scale. The dashed line in the inset is a
guide to the eye given by the equation �0=Adt

−3, where A=2
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discussed above, for the smallest diameter nanotubes �0 does
not behave with a 1 /dt

3 dependence, and thus multiplying �0
by dt

3 does not completely remove its diameter dependence.
For clarity, the nanotubes in families 2n+m=2, 3, and 4 for
which the deviation is the greatest are highlighted by dotted
lines in Fig. 3. For the M-SWNTs �shown in red circles�, the
value of �0dt

3 follows a sin�6�� behavior, which leads to a
zero natural torsion for both limiting values of �, namely, 0
and � /6, corresponding to zigzag and armchair nanotubes,
respectively. This result is expected since these nanotubes
have a reflection plane along the nanotube axis, which guar-
antees that the effect of torsioning the nanotube is the same
for either direction and thus the total energy �E� has to have
an extremum for �=0. However, for the S-SWNTs, shown in
green squares and blue triangles, near the ��� /6 region the
behavior is different from the simple sin�6�� function and
also different for q=1 and −1. This interesting behavior can
be well described by adding a term which depends on
sin�3��. The main chiral angle dependence of the natural
torsion could then be well described by the following equa-
tion:

�0dt
3 = a sin�6�� + qb sin�3�� �3�

with a�1.1
10−3 nm2 and b�0.75
10−3 nm2, and q=1,
−1, and 0 depending on the nanotube family, as explained
above. It can thus be seen that for near-armchair q=−1
S-SWNTs, the natural torsion turns out to be in the opposite
direction of the chirality of the nanotube �defined as the
angle between the chiral vector and the graphene lattice vec-
tor a1�, whereas for the majority of the nanotubes the natural
torsion goes in the same direction as the nanotube chirality.

It is important here to comment that for short nanotubes
the finite size of the nanotube can affect the value of the
natural torsion. Finite-size effects were not taken into ac-
count in the present study, for which only the intrinsic natu-
ral torsion effects are investigated. We can estimate for
which range of nanotube lengths the calculations performed
here are valid by observing that resonance Raman scattering
experiments in DNA-wrapped nanotubes indicate that for
nanotubes longer than 100 nm the electronic and vibrational
properties of the nanotubes are not affected by their finite
size.16 In fact, since the driving force for the emergence of
the natural torsion comes from the electronic structure while
loose nanotube ends allow for an extra relaxation of the elec-
tronically driven torque, we should expect that the natural
torsion will increase with decreasing nanotube length. In this
sense, for nanotubes longer than 100 nm, the natural torsion
calculated in this work should be regarded as a lower limit.
For shorter nanotubes, the finite size of the nanotube will
affect its electronic properties, thus affecting the natural tor-
sion. A more detailed study of the finite-size effects is very
important for shorter nanotubes and should be the subject of
further investigation.

Another matter of great importance is the question of
whether the presence of a natural torsion can produce mea-
surable effects at room temperature or if this effect can only
be probed at very low temperatures. In this sense, we should
point out that although for most nanotubes the energy differ-
ence between the torsioned and untorsioned configurations is

lower than 0.1 eV/atom, see Fig. 2�a�, the natural torsion
should affect the nanotube properties at much higher tem-
peratures since the nanotube properties will be determined
by the average nanotube torsion, which is different from
zero, independent of the temperature.

The presence of this natural torsion has several important
implications upon nanotube science. For example, in the cal-
culation of excitonic effects, only electronic states within a
single cutting line are taken into account for the evaluation
of each excitonic state. This approximation has been ex-
plained by the fact that the excitonic wave function around
the nanotube axis is delocalized and thus a single angular
momentum state can be used to describe it.17 This remains
true for naturally torsioned nanotubes. However, only pure
angular-momentum-related quantum numbers are good
quantum numbers for torsioned nanotubes. These pure angu-
lar momenta define a number d of different cutting lines
according to a helical-angular representation of the nanotube
structure.11 In fact, since torsioned nanotubes do not have a
pure translational symmetry, in principle, all group theoreti-
cal analysis based on the group of the wave vector11 will not
be strictly valid for torsioned nanotubes and the line group
analysis developed by Damnjanović et al.18 should be ap-
plied. Further group theoretical investigation is needed in
order to understand what are the actual effects of this sym-
metry breaking to the symmetry-related properties. One of
the most relevant effects of this natural torsion is on the
electronic transition energies and these effects may be re-
sponsible for discrepancies between previous theoretical cal-
culations and experimental results in SWNTs. For example,
our calculations show an upshift on the order of 64 meV for
the E11 transition of a naturally torsioned �4,2� nanotube
when compared to its undeformed structure. Also, as shown
in Fig. 4, the natural torsion has a strong effect on the mag-
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nitude of the minigap present in mod�2n+m ,3�=0 nano-
tubes. These minigaps are observed to increase by as much
as 50% due to the natural torsion. Also, our calculations
predict that the increase in the minigap is independent of the
nanotube diameter and scales as 1−cos�3�� �except for the
armchair nanotubes, for which there is no torsion-induced
gap�. Also, at a more conceptual level, the presence of this
torsion implies a revision of the definition of the chiral angle
since it can no longer be calculated from intrinsically struc-
tural properties, such as the �n ,m� values for the nanotube
and is dependent on the nanotube electronic structure and its
effect on the value of the natural torsion.

In summary, we have used an extended tight-binding ap-
proach to investigate the natural torsion in small diameter
chiral single-wall carbon nanotubes. The presence of this
natural torsion can be attributed to a torsional instability
originating from the lack of an inversion symmetry of the
chiral nanotubes by their helical structure and can be traced
back to the properties of graphene ribbons by considering a
simple zone-folding technique.19 The calculated natural tor-
sion was shown to decrease with 1 /dt

3 and for metallic nano-
tubes a dependence on sin�6�� was found, with a maximum

torsion for a chiral angle �=� /12=15°. For semiconducting
nanotubes, the behavior is slightly changed and a term de-
pending on sin�3�� needs to be added or subtracted �depend-
ing on the nanotube family� to take into account the asym-
metry of the electronic-band structure near the K point of
graphene. The presence of this natural torsion has several
important implications on the physics of nanotubes: it causes
a further opening of the minigaps in metallic SWNTs,
changes the optical transition energies and also has implica-
tions on the breaking of the pure translational symmetry of
the chiral nanotubes.
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